Elastische Zahlen

aus Kamelopedia, der wüsten Enzyklopädie
Wechseln zu: Navigation, Suche

Elastische Zahlen sind eine Verallgemeinerung der komplexen Zahlen. Im Gegensatz zu den reellen Zahlen haben sie aber keine punktförmige Darstellung auf der komplexen Ebene, sondern sind räumlich und zeitlich in gewisser Weise ausgedehnt.

Man könnte eine elastische Zahl näherungsweise darstellen als:

$ Ze=f(e(x) + e(iy)) $

wobei "e" die Elastizitätsfunktion ist.

Komplexe Zahlen sind elastische Zahlen mit

$ e(x)=x $

und

$ e(iy)=iy $

In diesem Fall können die elastischen Zahlen weder gequetscht noch gedrückt werden und sie sind auch unabhängig von der Zeit.

Im allgemeinen kann man elastische Zahlen aber quetschen oder dehnen.


Die elastischen Zahlen haben einen losen Zusammenhang mit den komischen Zahlen.

Dieser Zusammenhang wird zur Zeit erforscht.

Es gibt einige Grundregeln für elastische Zahlen.

Axiome:

1. Zwischen zwei unterschiedliche elastische Zahlen passt immer noch eine dritte.
(Daraus folgt der Satz vom eingeschlossenen Dritten) 2. Eine elastische Zahl kann von einer anderen nicht vollständig umschlossen werden.
(Hieraus folgt der Satz von der Erhaltung der Löcher.) 3. Elastische Zahlen können sich im Laufe der Zeit ausdehnen oder schrumpfen, sie müssen es aber nicht.
(Hieraus folgt der Satz von der ungewissen Realität).

Es gibt noch ein paar weitere Axiome, die insbesondere die Verhältnisse von elastischen Zahlen untereinander regeln.

Beispielsweise gilt:

1. Wenn a kleiner ist als b, dann kann b kleiner werden als a 
(Kommutativgesetz bei schrumpfenden Zahlen)
2. Wenn a kleiner ist als b und b kleiner ist als c, dann kann a kleiner werden als c. 
(Assoziativgesetz)
3. Wenn man a gegen b tauscht und b gegen a tauscht, dann ist das Ergebnis fast nie a 
(Umtauschgesetz)

Den Quotienten k=a/b zweier gleicher elastischer Zahlen a und b mit a=b nennt man Wechselkurs. Der Wechselkurs kann fest sein oder eine Funktion der Zeit.

Nachdem elastische Zahlen lange nur als Spielerei erschienen, werden sie heute vielseitig angewendet und bilden die Grundlage unserer Wirtschaftsordnung. Wichtig sind sie in allen Bereichen, dazu gehören Handel, Gesundheitswesen, Rentensystem, Uhrzeit und viele andere.

Allerdings wird zur Vereinfachung der Handhabung die Zeitabhängigkeit der Zahlen oft weggelassen, was zu seltsamen Resultaten führt. So erhielten viele Rentner andere Renten, als sie erhofft hatten.

Besonders elastische Zahlen sind die Zahlen im Militärbereich, insbesondere bei Abrüstungsverhandlungen. Auch in der Moralischen Vektorrrechnung kommen elastische Zahlen vermehrt zum Einsatz.

Siehe auch.png Siehe auch:  Mögliche Zahlen, Komische Zahlen


Thumbzahlen.jpg

Zahlen über Zahlen! Hier ist bestimmt auch was für SIE dabei!


Mögliche Zahlen -- Unmögliche Zahlen -- Unnatürliche Zahlen -- Übernatürliche Zahlen -- Blöde Zahlen -- Unbekannte Zahlen -- Unsichtbare Zahlen -- Primzahlen -- Verwechselbare Zahlen -- Unverwechselbare Zahlen -- Elastische Zahlen -- Böse Zahlen -- Geniale Zahlen -- Gerundete Zahlen -- Vermeidbare Zahlen -- Komplexe Zahlen -- Unvermeidbare Zahlen -- Graph Zahl -- Zahlen, die man sehen könnte, wenn man wüsste, wo man gucken muss -- Komische Zahlen -- Schwarze Zahlen --Unbestimmte Zahlen -- Unumstößliche Zahlen -- Irrelevante Zahlen -- Langweilige Zahlen -- Rationale Zahlen -- Bezahlen


-1 0 1 Krumm 2 3 Pi 4 5 6 Sex (Zahl) 7 8 Sacht 9 Zeun 10 11 12 13 Drölf 14 15 17 18 19 20 21 23 24 25 Kamelzahl 27 32 34 39 42 51 69 88 99 100 110 112 222 333 404 666 1000 1001 1111 1337 1901 1905 1945 1976 1984 1987 1990 2000 2001 2004 2105 4711 ...


Und irgendwo im Nirgendwo lauern Sümpf und Einz.

Volltreffer bei Google…ansehen? Google One:6Elgoogbutton2.gif